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ABSTRACT

An analysis of the errors inherent in tracking the radar-cross-section

centroid of a chaff cloud shows the centroid to have a random motion in

addition to its long-term motion with the chaff cloud. This random motion

can lead to errors in cloud trajectory estimation. There is a further

error caused by the fact that the centroid does not exactly follow a

Keplerian orbit. The deviation is slight, however, and can be neglected.
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I. INTRODUCTION

In discussions of chaff cloud tracking it is often tacitly assumed

that the measured radar-cross-section (RCS) centroid follows a Keplerian

orbit. This is not entirely true for two reasons:

1. RCS fluctuations cause the instantaneous cross-section centroid

to move randomly about the long-term-average centroid. This

means that between any two independent measurements there will

be random fluctuations in the centroid position, even with a

noiseless radar.

2. For a large cloud there are various nonlinear gravity gradient

effects. For typical trajectories the long-term-average cen-

troid of a cloud will drift from a Kaplerian particle having

the same initial velocity and position. This displacement

distance is quite small, however, being on the order of 0.1%

of the cloud radius even for rather large clouds.

Each of these effects is discussed in subsequent subsections.
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II. CENTROID MOTION

A. ANALYSIS
Consider a cloud that is N range resolution cells long but small

in angular extent. The centroid is defined as

N N£/£z
i~l /i=l

where oG is the RCS of the ith cell.

If all of the c(i) were equal and constant in time, then we would

have
c=N(N+1)/ 2 N+_l

N 2

Thus if there were 25 resolution cells the centroid would be in the

center one; that is, (25+1)/2 = 13

Because of the nature of chaff responses, however, the RCS will not

be constant from cell to cell but will fluctuate because of interference

effects. If the number cf chaff pieces in any cell is sufficiently large

the probability density function pl(a) for the distribution of indepen-

dent measurements of one cell will be exponential; that is

pl() = -- /e

We shall for the time being consider the case in which the expected value

of a is the same for each cell.

2



The centroid of the first N cells can be written

N N-1
F, io i NoN + i~i

______ i=lc (N ) -- N~ --
N N

i=l

which can be rearranged to give

IN N-i

c(N)( a, = No N+ c(N-l1)(E Gi)

If we let gN c(N) a)i then we have the contiguity relationship

gN =gN-i+ NoN

NN

The probability of having a value gNis

P (gN 9N-1 (gN-I)Pl1( 9N N gi4-l.d= = N l d g N _I

0

Taking Laplace transforms we have

1 + Nsa

where we have used the fact that

pl (a) = 1 e-ala

3



I
Similarly

PN-1(s) = PN- 2 (s) 1
1 + (N-1)sc

and thus

N

P N(s) = (i + is-c-1

and

N

£nPN(S) = kn(l + iso)
i=l

But

Nr-

=n(l+isa) j-(3C)[ 2 + 3

33

ffiAs_+ s2 s3) +

+ Njs~a) - 2 + 3 ... J

r 2 -3

(Nsa)[ + 2 + 3 (N]a 2-

+ sq- 13+ 3+ 3 3 N 3]
A 3

2 3
=As +Bs + Cs .. H(s)
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where A oN (N+l)/2

S(N+l)(2N+)
B =-0 -2LN 6]

C i [N(N+1)/2]
2

etc.

Thus

p4(gN) =/-iPN(s) =4-i e-H(s)

N
Since gN (cN) N 0i

i-i

we can write

p(g) , p(c)pN(z = g/c) -1 dc (2)

0

where we have suppressed the subscript on g and c , and let

N

z

i=l1

Before going on, it is worthwhile pointing out explicitly that in

Eq. 2 we have tacitly assumed that p(c) was independent of z . Consi-

der two sets of a's, alp a 29- a.N and a1, 025 a3"''*aN 9 each having

the same total a (i.e., al+02"' = ON = l2..?N z ). Each set has a

unique centroid (c and c) associated with it. The relative likeliness

of each set (point in N dimensional space) is

P(ol)P(02)...P(ON) do1 do 2 ... doN

P(a )P(02)...P(ON' do1 do 2-.doN

5



Now consider two other sets of points, ,a2,. .. crN and

O 1 9,acO2, ... aoN . These have the same centroids (c and c) associated

with them. If the relative likeliness of these two new sets of points

is the same as for the first two sets (a - 1), then the density dis-

tribution of c's will be invariant with a . Since varying a varies

the total RCS (z), we will have proved that p(c) is independent of

z.

Thus we must show that

P(ol)...P(aN ) da l..daN ? P(a•l)''.P(aON) dacl...dcaN

Canceling the do's and the a's gives

P(I)...p(ON) ? P(aa l)...P(a N)

pa1)..PN ) p~a 1 ) ... pa N

For an exponential distribution this gives

-Z? ea
e e

and the equality has been shown.

N
The expected distribution of a i i.e., pN(z) , can be

evaluated by noting that

z

PN(z) PN-I(a')pl(z - a') da'

The N indicates a summation over N cells. Taking Laplace transforms

-we obtain

6|



I
PN(S) - [PNl(s)]Pl(s)

= [PN 2 (s)P 1 (s)]PI(s)

N= [Pl(S)]

But P1 (s) = e-/-a

a

+ as

Thus

P- 1 = (z1N)N-1 e--;
N A (l +as)N ar(N)

If we multiply both sides of Eq. 2 by gq and integrate from zero

to infinity, we have

c p(c) dq = N g'q p(g) dg

0 ~7 r(N+q)

If we let q = , then we have

cp(c) dc L gp(g) dg

7



The integral on the left is c (the expected value of the centroid).

The integral on the right is the first moment of p(g) and this is

AA

simply~

(~~)~s=O = ~ s =

Thus

C = A/No = N+

Similarly, if we take q = 2 , we have

c 2p(c) dc = -r(N) f g2 p(g) dg

0 c, (N+l)! 1

Remember that if F(s) e-SXf(x) dx , then differentiating both

0

sides N times with respect to s gives

F(s) = (-i) f(x)x e dx

If we now set s = 0 , we have

SxNf(x) dx = (_i)N (.--N F(s)
s=0

Thus the Nth moment of a function is (-1)N times the Nth derivation of

its transform at s = 0

8
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C2 1 (A2 -2B)c=2(N+l)N

The variance is

-2 2 A2- 2B A2
c c -2 -22

a N(N+l) a N

N-i
12

In order to verify this result a computer Monte Carlo experiment

was run. The quantity
N

i=l

N

i=l

was calculated after generating N random values of aI . The ai were

selected from a distribution of the form

p(a) = e-a

The process was then repeated W times to give a total of W

independent values of c .

A total of W = 500 independent evaluations of c , for a cloud

containing 121 cells, gave a value of c = 61.1 ,versus a theoretical
2 2

value of 61, i.e., (121 + 1)/2 . The quantity c - 2 had a value of

10.1 compared with the theoretical value of 10.0 (i.e., 121- 1

41



B. INTERPRETATION

Since the variance is proportional to N (for large N ), the rms*

fluctuation (standard deviation) on any measurement is proportional to

S. If the cloud has a total length L and a resolution cell width

6 = L/N , we see that on any measurevent the instantaneous "true" centroid

tI is typically

X standard deviation x cell size

- 1f 2 X 1 12 X2 ×6 1 (3)

from the long-term-average centroid.

This result is physically reasonable in that the fluctuation gets

smaller as

1. The cloud gets shorter **

2. The resolution gets better

The "square root of N" form for the deviation from center is exactly

what one would expect from a random walk configuration and could probably

have bees predicted on a priori grounds; however, the coefficient of 1/12

could not have been similarly predicted.

It would be slightly misleading to refer to this term as "error" since
it is the true instantaneous RCS centroid. The point is that the RCS
centroid fluctuates. The most one can say is that there is some long-
term-average centroid which can be used as a reference point. This
point is not necessarily coincident with the center of mass. Strictly
speaking one can argue that even this long-term-average has a secular
variation because of changing asp, t angle of the radar line-of-sight
relative to the chaff spin axes. This effect is small.

Remember we have assumed there are a number of chaff pieces in each cell
(to assume an exponential distribution of RCS values) and also that
L>>6 (N>>l) . These two assumptions impose limits on where the result
can be used.

1
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This brings up the interesting point as to whether there might be

an alternate partitioning scheme which would have smaller fluctuations

associated with it. We have been looking for the centroid which is a

quantity defined by

J dx (x - c) a(x) dx = 0 (4)

It is also possible to track relative to the median; one looks for

the point that has equal amounts of RCS on either side.

Mathematically we look for a point m such that

m C

f C(x) dx = c(x) dx (5)

-- o m

or, put into the same format as Eq. 4

fxm-j----X m a (x) dx = 0 (6)

The difference between the two quantities is that the calculation

of c places more weight on pieces of chaff far removed from the center

(the weighting factor has a magnitude Ix - cj ). The definition of

m places equal weight on all pieces of chaff since the weighting factor

in Eq. 6 always has unit magnitude.

The Appendix gives a derivation of the rms fluctuation when the

median is tracked and it is

k,= x__ _ _ _ _ _=_-2_ _ r_ _ _

For generality we shall use an integration notation; it is, mutatis
mutandis, consistent with Eq. 1.

i1
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Note that the form (YL) is the same as for centroid tracking

although the coefficient is slightly larger.

C. GENERALIZATIONS TO OTHER GEOMETRIES

1. Non-Uniform Density

Throughout this entire discussion we have assumed that the expected

chaff distribution is uniform. If it is not uniform but (as is more

likely) peaked in the center, the variance is be less.

A chaff density distribution as is shown in Fig. 1 would have a

variance of approximately Y1/12 ,rL7/ rather than Y'1112 I . (The

wings are assumed to be negligible compared to the center.)

p (x)

~~- L-

Figure 1. Chaff Density Versus Range

12
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If the density distribution were as shown in Fig. 2, the centroidvariance could be considered as from two contributors, one of RCS p L

and variance G(L2 ) and the other RCS p Ll and variance G(Lo) 2

G(L) is the Green function for the variance of a uniform density
distribution of length L and resolution length 6 . Thus G(L) (1/12)6L
for centroid mapping and (3/12)6L for median mapping.

The resultant net variance for the two is

2 PoL 2G(L 2 ) + pLG( )
a 2 o2 2 ol I

p oL2 +p oL

'IV

o2 ol

L--- -__

Figure 2. Chaff Density Versus Range

13



iI

This result can be generalized for a density distribution which is

symmetr.c and monotonic on each side (as shown in Fig. 3) to give
2 /f
a 2 2 dxx G(x) dx
average dx dx dx

0 0

where we used the fact that the density distribution is symmetric to

place the lower limit at zero.

A uniform density distribution of total length L would give

-P P[6(x + L/2) - 6(x- L/2)]Iidx o
and

a 2 2g -(L/2) 2 gL

._ p (x)

-L/2 0 LI/2

Figure 3. Chaff Density Versus Range

14



where g = 1/12 for centroid mapping and 3/12 for median mapping. This

result is the same as that obtained before.

A triangular distribution would give

Od p i- L,d_ ) = P o --L A 21) ,

dx -- p- (x > 0), and

2 ~2g V (L/2)
a 2 g( 2 3 2gL6

(2o) (L/2)22 2

Similarly a quadratic distribution would give

2 3c= gL6

All of the preceding results can be summarized by saying that the

rms shift of any measurement from its long term average is

where g = 1/12 for centroid mapping and 3/12 for median mapping; f

is a form factor which is 1 for a uniform chaff distribution, 3/4

for a quadratic distribution and 2/3 for a triangular one. Thus for

example, the centroid of a chaff cloud of length L with a quadratic

distribution of chaff will fluctuate about its long-term position with

a typical deviation of /(1/12)(3/4) YL = 0.25 VL_

15



2. Three-Dimensional Configurations

The discussion throughout this paper has been restricted solely to

finding the variance of the RCS centroid (or median) of a cloud that was

long in one dimension but short in the other two. (We have considered

the long dimension to be range, but it could just as well have been one

of the angular dimensions.)

It is worthwhile generalizing our result to the case in which the

object could have subdivisions in angle as well as range.

Consider a rectangular cloud (Fig. 4) of dimensions LV, L2 and Lt3

which can be radar subdivided into cells of size Al, A2 , and A3 (L1
could be the range extent of the cloud and AL the range resolution; L2

could be the width of the cloud in one dimension, and A2 the associated

angular resolution).

A CO

L2

L3

L1

Figure 4. Graphic Representation of Chaff Cloud

16



There are thus

L2 L3

A 2 AT

columns of length L1 , and each one has a centroid standard deviation

of

If we average the centroids of each of the N1 columns, the stan-

dard deviation will be reduced by a factor i/vN' , to give a value

43 Ll~l

The standard deviation in the other dimensions can be written

similarly, i.e.,

Nand NIFj

The standard deviation of the net (three-dimensional) "error" is

the square root of the sum of the square of the standard deviation in

each dimension. Thus we have a net standard deviation of

17
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If we re-express the cloud in terms of two form factors a2  /L

and a 3 = L3/L ,and one scale size L ,then we have

~j• 3]1/2

standard deviation=-'- i7i jIA2K3 [ + ]3

Note that for a given shape cloud (a and a constant) the standard
2 3

deviation gets smaller as the cloud gets larger. This is contradistinction

to the case of a one-dimensional cloud where the standard deviation gets

larger as the cloud gets longer. The reason is that the variance in any

one dimension is proportional to the length in that dimension divided by

the number of columns in that dimension, e.g.,

L L
1 1* ,i--• .. -. .A(A.3

N1 L 2L 3 '23'

If all dimensions are doubled then the variance of one column is

doubled (because it is twice as long): but there are now four times

as many columns for a net improvement of a factor of two (a factor of

the square root of two in standard deviation).

This analysis has several limits which should be spelled out.

In the first place, we have tacitly assumed no errors introduced by

S/N considerations, i.e., the signal is so strong that this error is

negligible compared to variations in centroid caused by the RCS fluc-

tuations.

As the cloud gets larger this assumption will become poorer for

two reasons:

1. For a constant amount of chaff (constant total average RCS)

the signal in each cell becomes smaller as the chaff is

diluted, and thus the signal noise error increases

18
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and

2. The centroid fluctuation "error" decreases (%l/vri).

Thus at some size S/N considerations will dominate.

There is a further limit. If we consider the chaff cloud to be

compressed to a point (still maintaining a constant total RCS) then very

accurate range measurements are possible because of the large SIN ratio.

The error will be proportional to

resolution length

and will not have a centroid RCS fluctuation term.

The competing effects can be illustrated as shown in Fig, 5, where

we have considered a cubical cloud of side L . For small L (much less

than a resolution length and even less than resolution length/(S/N) 1 / 2

the centroid standard deviation comes solely from S/N and radar consider-

ations and not from true motion of the centroid (Region I).

As L gets larger (Region II) centroid motion comes into dominance

and the standard deviation becomes larger. After L becomes larger

then a resolution cell and the radar has multiple cells, the centroid

motion error becomes smaller (at a rate proportional 1/lvf) (Region III).

Finally (Region IV) the standaid deviation caused by the centroid

motion becomes less than the increasing noise error (because of decreased
*

S/N in each cell). D. Hunt has shown that in this region the standard
deviation of the centroid error is independent of cloud size, as long

as the S/N ratio is large enough to permit detection.

D. Hunt, Chaff Cloud Centroid Measurements with the MSR and ALOR Radar
Systems, General Research Corporation IMR-1377, August 21, 1970.

19



FIXED RADAR POWER; CONSTANT NET RCS; -
CUBIC CLOUD (a2 a3 1)

'---

U- I

C-)

I, II III IV

I---

DIMENSIONS OF CLOUD, L

Figure 5. Representative Curve Showing Centroid Error as a Function of
Cloud Size
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III. GRAVITY GRADIENT EFFECTS

In discussions of chaff tracking it is usually assumed that the

(long-term-average) centroid follows a Keplerian orbit, although it is

known that this is not rigorously true. To quantify the magnitude of

the error in such an assumption, several machine runs were performed.

The first was a 4500 n mi reference trajectory 30 deg reentry angle.

Then the trajectories of two particles ejected 63 s after launch and in

opposite directions to each other, were calculated. The center point

of the two ejected particles can be considered as the centroid of a

rather degenerate (2 piece) chaff cloud. The deviation of this cen-

troid from the reference trajectory is a measure of its deviation from

the Kepler orbit since both trajectories had the same position and

velocity at ejection. (One point in position-velocity space is suffi-

cient to define a Keplerian trajectory.)

Figure 6 shows the separation between the centroid and the true

Keplerian position for four ejection velocities (10, 50, 100, and 150 ft/s)

as a function of time after ejection; the particles are ejected at

right angles to the velocity vector and in the plane of the orbit. Note
3

that the slope of the curve is approximately proportional to t and

thus the centroid has a velocity away from the reference trajectory at

a rate proportional to t2 . The curves can be very closely approximated

by

D = 5 x 10-12 V2 t3 ft
0

Figure 7 shows the fractional displacement of the centroid, that

is, the displacement divided by the cloud diameter, as a function of

diameter at impact. The fractional rms is quite small and even for a

cloud as large as 100 n mi at reentry is less than 0.2%. This deviation

is usually negligible for most applications.

We are assuming here that each piece has the same RCS.

21



EJECTION VELOCITY

3ft 150 ft/s

-3• 0 d mi RETRYANGECTR

1050 ft/s

10 2 10 ft/s

-ii

1 .0

0.11 111113 A I I 102 S101021s

TIME AFTER EJECTION

Figure 6. Centroid Displacement from the True Keplerian 
Position as aj

Function of Time after Ejection
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V

loG ft

100 r ml

4PARTICLES EJECTED
PARTI CLE S E JECTEDVPERPENDCULAR TO
PERPENDI CULAR ToS• VELOCITY VECTOR.

ND IN PLANE OFTRAJECTORY

510

C1 ln mi

10 4iiilI
10-

4  10-3 10-2

FRACTIONAL ERROR

Figure 7. Fractional Displacement of Centroid as Function of Cloud
Diameter at Impact: 30-deg reentry; 4500 n mi Trajectory

If the particles are ejected along different axes, the same general

conclusions hold, although numerical values are slightly different
(Fig. 8). The largest fractional shift of the centroid occurs when the

particles are ejected perpendicular to the plane of the trajectory. Even

in this case the fractional deviaticn is less than 1% even for a 100 n mi

diameter cloud. This is the deviation for the special case in which all

of the particles are at the edge of the cloud; any other weighting would

reduce the values still further. A uniform distribution reduces the

fractional error by a factor of 3. As an example, chaff ejected perpen-

dicular to the plane of the trajectory (worst case) so that at reentry

it formed a uniform line 40 n mi long would have a deviation of less

than 0.1% of 40 n mi.

And finally a realistic case in which particles were ejected in

several azimuths would give a further cancellation because of offsets

in different directions.

In short, this gravity gradient effect is--for typical trajectories--

negligible.

23



106 ft

PERPENDICULAR TO 100 n mi

VELOCITY VECTOR,
IN PLANE OF
TRAJECTORY

PARALLEL TO
< VELOCITY VECTOR

PERPENDICULAR TO105- -/ VELOCITY VECTOR,

IN PLANE OF
L /TRAJECTORY

I~ ~ 1 n l~mi

4 1 1 1 1 1 1 I 1 I I -I I I I I

104 10 3 10

FRACTIONAL ERROR

Figure 8. Fractional Displacement of Centroid as Function of Cloud
Diameter at Impact: 30-deg Reentry; 4500 n mi Trajectory

24

• 4



IV. CONCLUSIONS

The major "error" in centroid tracking (over and above radar bias

and S/N errors) arises from the fact that the centroid is not a steady

quantity but rather fluctuates in space. The rms fluctuation from rnea--

surement to measurement is on the order of 0.37L_6 in range.

The error caused by the drift of the centroid (or median) from a

Kepleiian orbit is small in comparison with this effect. (A 0.1% fra.-

tional shift in the centroid would be comparable to the centroid jitter

effect only if V) were on the order of 10- 3, arLJ this would demand a

resolution cell width one-millionth of the cloud length.)

25
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APPENDIX A

In this appendix we shall estimate the variance of the median RCS

position. The cloud is N = L/S resolution cells long, where L is

the cloud length and 6 is resolution cell width. Each cell has the

same average RCS a , and independent values are distributed exponen-

tially.

If one sums the RCS values in the first v cells the probability

distribution for the sum ts

(oi/0) 1 •1Y 1/
PI (01IV) = (V) _ e (7)

while the probability distribution for the sum of the remainis,: N-V

is
• (02/ o)~ N- (v- i) i - 2/

P 2 (( 2 av) 2(N-/ ) • e/a (8)
P222r(N-v) -

If z E a 1 - 2

then

p(z,v) = fdo
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For z = 0 (equal RCS on each side), we have

p( = I pp p2 (o,v) do

0

This gives the distribution of the cell number (v) at which the

RCS sums on each side are equal; we shall name the v value which

partitions the cloud into two equal parts m and write

p(O'V) p(m) 1 (o-/)m-l 1 (0/a) N-m-l -2/a do

f oI(m) or(N-m)
0

1 r (N-l)
- N-1

o 2 r(m) F(N-m)

For large N we can make the transition from a summation to an integral

and write

NN

m f dm m p(m) f p(m) dm

0 /0

N/2 ) /2

- f dm(m+N/2) p(mrN12 dm p(m+N/2)

-N/2 -N/2

N/ 2
f dm (m+N/2) r(m+N/2) r(N/2 - m)
-N/2

N/2
f dm F(m+N/2) r(N/2 - m)

-N/2

N / 2 d m mi

N -+ 2 (N/2 + m) T(N/2 m)

2 N/2 dm

-N/2 r(N/2 + m) r(N/2 - m)
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The upper integral is 0 since the integrand is odd, and thus

- N-: (N >> 1)2

We can evaluate the second moment by writing

- NoN

m - 2dm p(i) dm p(m)

0 01o

N/2 2fN m p(m + N/2) dm

= (N/2)2 + N/2

f p(m + N/2) dm
-N /2

N/2 N/2

- (N/2) 2 + inm p(2 m + N/2) dm p(m + N/2) dm

-N/2 -N12

N/2 2 dmN/2
f'2 2mi din din

f (N/2 + r(N/2 - m) r(N/2 + m) fr(N/2 - m) F(N/2 + m)
-N /2 -N/2

Using Sterling's approximation this becomes

N/2 2
1-im dmN 2]N/2-I/2 (1 - 4m/N)mi
f1 2 2- N/2) 1/

(N/2) 2 + N/2

f dnm (1 - 4m/N)'m

0 [1 - m2/(N/ 2 )2](N-)/2

29



By making approximations

(1- 4m/N)m e- 4 m 2N

and

S_42 N- e 2m2/IN
N2

and extending the limits of integration to infinity, we have

CO
t 2

f 2 - 2 m IN
2_ 2m_ _ _ _e

m2 (N/2) + - (N/2)2 + N

f e-2m 2 /IN

0

The variance is

m ()2 = (N/2)2 + N/4 - (N/2•)2 = N/4

and the RMS shift in the median of any measurement from its long-term

average is /114N = ANT
2
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